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ABSTRACT: The ability to design and construct synthetic
biological systems with predictable behavior could enable
significant advances in medical treatment, agricultural
sustainability, and bioenergy production. However, to reach
a stage where such systems can be reliably designed from
biological components, integrated experimental and computa-
tional techniques that enable robust component character-
ization are needed. In this paper we present a computational
method for the automated characterization of genetic
components. Our method exploits a recently developed
multichannel experimental protocol and integrates bacterial growth modeling, Bayesian parameter estimation, and model
selection, together with data processing steps that are amenable to automation. We implement the method within the Genetic
Engineering of Cells modeling and design environment, which enables both characterization and design to be integrated within a
common software framework. To demonstrate the application of the method, we quantitatively characterize a synthetic receiver
device that responds to the 3-oxohexanoyl-homoserine lactone signal, across a range of experimental conditions.
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The application of engineering principles to the design and
construction of biological systems with predictable

behavior is a primary focus of synthetic biology. While
significant progress on the physical construction of systems1

has been enabled by large-scale DNA synthesis and assembly
methods,2 the design of systems with predictable behavior
remains a major challenge. One important design strategy has
been the development of standardized parts3 that can be
composed to form devices, with the ultimate goal of assembling
these devices into larger-scale systems.4 Although this strategy
has met with some success,5,6 all but the simplest designs
typically require trial and error experimentation. Furthermore,
exploring these designs experimentally using high throughput
methods still leads to a combinatorial explosion in the number
of experiments, rendering the complete exploration of the
design space infeasible even for simple systems. Computational
design approaches have the potential to address this challenge
through in silico experimentation. Such approaches require
robust methods to quantitatively characterize the behavior of
biological components, either as parts or as simple devices
engineered for modularity,7,8 across a range of experimental
conditions. Integrated experimental and computational techni-
ques that allow such characterization will be essential for scaling
up the design process.
Fluorescent reporter proteins provide a convenient exper-

imental tool for characterizing quantitative properties of
biological components,9 and this approach has been integrated

into computational tools for the processing of fluorescence
measurements.10 To date, fluorescence-based techniques have
been used to characterize a number of biological parts for the
construction of synthetic systems.5,6,11 However, the depend-
ence of these techniques on specific experimental conditions
has so far limited their broader applicability. To address this,
experimental strategies based on in vivo measurement standards
have been proposed,12 where relative rather than absolute
quantities are recorded, similar to the use of reference signals in
other engineering fields. Extending this approach, spectrally
distinct reporter proteins within the same device have been
proposed for the measurement of relative signals, leading to the
development of a ratiometric experimental protocol and an
accompanying mathematical framework.13 However, as large-
scale biofabrication facilities become operational, there is an
increasing need for automated, high-throughput character-
ization methods that integrate experimental protocols with
computational analysis and are robust to changes in
experimental conditions.
In this paper we present a computational method for the

robust characterization of genetic components. At the core of
the method, Bayesian parameter estimation and model
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selection are used to evaluate competing models against
experimental observations, while incorporating the uncertainty
associated with the data. Our Bayesian approach can be used to
determine which mechanistic hypotheses about component
behavior are most likely, given the experimental data. The
growth of bacteria under various experimental conditions is
modeled explicitly, allowing key properties of the studied host
to be inferred. Additional data processing steps allow the
transcriptional activity of the device to be estimated, together
with its response to external inputs such as inducer
concentrations. All computational procedures are amenable to
automation, which facilitates the high throughput application of
the method. When combined with automated ratiometric
fluorometry, the method provides an assessment of device
behavior in response to changing environmental conditions,
together with the resulting effect on cell growth. We
implemented the method within the Genetic Engineering of
Cells (GEC) modeling and design environment,14 which
provides simulation, visualization and analysis functionalities
in a convenient web interface. This enables both character-
ization and design to be integrated within a common software
framework. To demonstrate the application of the method, we
quantitatively characterize a synthetic receiver device that
responds to the 3-oxohexanoyl-homoserine lactone
(3OC6HSL) signal, across a range of experimental conditions.
We construct the device using components from a bacterial
quorum sensing system,15 for which many of the biological
mechanisms have been identified.16 The natural system has
been studied both in vivo17 and in vitro,18 and a ″datasheet″ for
a synthetic device based on these components has been
produced.11 Even so, diverging computational modeling
strategies have been applied in previous studies using analogous

synthetic devices,19−21 where not only kinetic parameters but
also mechanistic assumptions vary significantly. By character-
izing the synthetic receiver using our proposed method, we
provide a robust foundation for future design projects involving
this component.

■ RESULTS AND DISCUSSION
Computational Method. The method described in this

paper relies on the experimental technique developed by Brown
et al.,13 in which a characterization experiment is performed by
simultaneously measuring a number of signals over time,
including absorbance, proportional to the number of cells in a
culture, together with the fluorescence of spectrally distinct
reporter proteins. Briefly, the method relies on the use of two
fluorescent reporter signals, one to monitor the transcriptional
activity of a device and another to monitor the activity of a
reference promoter. This allows a direct ratiometric measure-
ment, given by the ratio of the device activity to the reference
promoter activity. The ratio is more robust to variations in
experimental conditions and instrumentation, which affect both
fluorescent signals simultaneously and are thus attenuated.13

The experimental procedure can also be used to measure the
activity of a device in response to inputs such as chemical
inducers.
In our computational procedure (Figure 1), the raw data is

first corrected to account for the effects of background and
autofluorescence (see Methods). A set of growth parameters is
then inferred for each sample using the absorbance signal (the
optical density OD600). To characterize the device during
exponential growth, a relevant subset of the data is selected
automatically. This differs from the previous approach,13 for
which manual tuning was required. The selected data is then

Figure 1. Overview of the computational method. (A) Processing steps of the computational method, where arrows indicate dependencies between
steps. Data collection steps are performed in parallel, while data processing steps are performed sequentially. Absorbance measurements of cell
growth are used to estimate a growth model (C), which also takes into account the uncertainty in model parameters (inset of C). The growth model
is used to automatically select a subset of the data corresponding to the exponential growth phase (highlighted data points). The raw fluorescence
measurements (B), here shown in blue (CFP) and yellow (YFP), are used to estimate the steady-state value of the ratio between the two
measurements. This is obtained by computing the slope of the line that best fits the data in exponential phase (D). These estimates are used to
compute the activity of the device across different experimental conditions, which here correspond to varying concentrations of chemical inducer.
This allows the construction of a model describing the device response (E). The model also takes into account the uncertainty in the parameters
(inset of E). Panels B−E were generated automatically from the GEC implementation of the method (see Supporting Information for details).
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used to predict the absolute steady-state value of each
fluorescent signal, which we refer to as Fi

s. A direct calculation
is then used to obtain the relative steady-state fluorescence,
which is used to compute the relative device activity. The
device can be characterized under varying experimental
conditions, corresponding to differences in temperature, pH,
or concentration of a chemical inducer. The response of the
device to changes in these conditions can be characterized by
inferring the parameters of an appropriate mathematical model.
Different mathematical models, representing alternative hy-
potheses for the mechanisms governing the device response,
can also be rigorously compared. In the following we highlight
the key computational steps of the method that enable its
automation and implementation within the GEC framework14

(Supplementary Figure S1).
Bayesian Parameter Inference. The characterization

procedure outlined above aims to infer the parameters of
mathematical models describing the behavior of a biological
device. We accomplish this through Bayesian parameter
inference methods, generalized to a variety of functional
relationships. Formally, given a data set D = {(x0, y0), ..., (xn,
yn)} and a model y = f(θ, x) with parameters θ, let P(θ|D)
denote the posterior distribution, which describes the joint
conditional probability of different parameter combinations
given the data. The posterior captures the uncertainty about the
exact model parameters given uncertainty in the experimental
data. This uncertainty can be propagated in subsequent
computational studies involving the inferred model, allowing
a better assessment of the expected device behavior as opposed
to singleton (e.g., average) parameter estimates. In particular,
this provides a statistically rigorous form of sensitivity analysis,
which can be used to determine the robustness of predictions
to uncertain measurements and parameter estimates.
Using Bayes’ formula, the posterior is expressed as

θ θ θ| = | ·
P D

P D P
P D

( )
( ) ( )

( ) (1)

Based on this, estimates of the posterior are obtained using an
MCMC procedure (see Methods) by assuming a uniform prior
parameter distribution P(θ) and defining the likelihood of a
parameter set as
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where (y, μ, σ) = 1/(σ(2π)1/2)e−[(y−μ)
2/(2σ2)] denotes the

normal (Gaussian) distribution with mean μ and variance σ,
and yî = f(θ,xi) is the model prediction for parameter set θ.
Intuitively, we assume that the experimental measurements are
samples drawn from the model but corrupted by Gaussian
measurement noise. We compute the likelihood of each data
point (xi,yi) using the Gaussian probability distribution
centered around the ideal yî. The variance of the experimental
error often depends on xi. We refer to this relationship as a
noise model and represent it by the function g(x). One family of
noise models relevant for this work is given as g(x) = σ·xn and
includes constant (n = 0), linear (n = 1), and square-root (n =
1/2) noise models.
Growth Models and Data Selection. While characteriz-

ing the transcriptional activity of a device is the main focus of
the method, the growth of cells containing the device under
different experimental conditions is also recorded. To study the

effects of the device on cell growth, we infer the parameters of a
growth model for each experimental sample, based on the
optical density (OD) signal. Several classical growth models22

were implemented, but in the following we focus on the
Gompertz model:
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where e = exp(1) is Euler’s constant, K is the carrying capacity
of the medium, λ is the lag length, and μ is the maximal
(exponential) growth rate. We infer the growth parameters K,
λ, and μ from the experimental data using the Bayesian
procedure described above. We use a constant noise mode,
which assumes that the standard deviation does not scale with
the output. This allows us to characterize the growth of cells
engineered with a given device under different experimental
conditions, such as media, inducer concentration, and temper-
ature. While only the growth rate μ is used to compute the
device activity, the additional growth parameters provide useful
information about the studied system.
To select the range of data representing the exponential

phase of cell growth, we estimate the time at which the maximal
(exponential) growth is reached as

μ
λ=

·
+t

K
em

(4)

(see Supporting Information for details). The range of data
used for all subsequent computation is then defined as Fi(t) and
OD(t) where λ < t < 2tm̂ − λ (here, tm̂ = tm + ε is the time when
the maximal growth rate is reached, offset by a factor ε = 50
min to capture the maturation of reporters). Essentially, this
computation corresponds to selecting a time interval following
the lag phase and centered around the time when the maximal
growth rate is achieved, taking into account the delay caused by
the maturation of the reporters.

Activity Computation. The ratiometric characterization
method13 relied on the computation of steady-state fluo-
rescence values per cell of each individual signal as Fi

s = (∂Fi)/
(∂OD). A subset of the data was selected, for which a linear
relationship between fluorescence and absorbance holds (e.g.,
the exponential growth phase). The absolute steady-state
transcriptional activity of the device expressing reporter i was
computed as

γ α γ μ γ μ
ρ α

=
+ + +
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P
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where μ is the growth rate of the bacteria and all other
parameters describe the expression and maturation of the
reporter, including protein degradation rate (γ), mRNA
degradation rate (γM), translation rate (ρ), and maturation
rate (α). It is assumed that the degradation rates of mature and
immature fluorescent protein are similar. By designating one of
the signals Fr as a reference, the relative steady-state activity13

was computed from eq 5
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where α and αr denote the maturation rates of the primary and
reference reporters. (Several assumptions on reporter stability
and the similarities between primary and reference signals13

were involved in simplifying eq 6.)
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In our method we use eq 5 to compute the absolute steady-
state device activities but implement a more direct method for
the computation of relative activity as

α α μ
α α μ

=
+
+

·R R
( )

( )i
r

r
i ,r

(7)

where Ri,j = ∂Fi/∂Fj is a direct estimate of the steady-state
fluorescence ratio per cell between a pair of signals, which is
computed using linear least-squares regression. This extension
allows us to eliminate the dependence on measured OD data
from the computation. Furthermore, the linear relationship
between each pair of fluorescent signals holds over larger ranges
as opposed to the relationship between each fluorescent signal
and OD. Overall, these factors contribute to a more robust
computational strategy and decrease the variability between
individual measurements. Note that currently only the
maximum likelihood estimate of μ, rather than the full
posterior, is used for the computation in eq 7.
Response Models and Model Selection. A variety of

different mathematical models are applicable for describing the
changes in the behavior of a device in response to changes in its
environment. The choice of model depends on the specific
property being studied (such as changes in transcriptional
activity, growth rate, or lag phase length) and external quantity
being varied (such as temperature or inducer concentration).
Here, we focus on modeling the steady-state transcriptional
activity of a device in response to changes in concentrations of
an external regulator. For such inducible or repressible devices,
the functional response

= · + ·
+

P
a b K

K
[A]
[A]

n n

n n (8)

known as a Hill f unction23 has been widely used for
characterization. Here, P is the transcriptional activity of the
device, [A] denotes the concentration of the regulator, and the
remaining parameters capture the maximal (a) and basal (b)
activity, sensitivity (K), and cooperativity (Hill coefficient, n).
For some simple chemical mechanisms such functional
response models can be derived directly. For example, this is
the case when a number of inducer molecules bind a target
promoter directly and the rate of expression is a from a bound
promoter and b from a free promoter. Such a promoter is
inducible for a > b and repressible for b < a, with no expression
from the unbound promoter when b = 0. The parameter n
reflects the number of inducer molecules involved (provided
that the binding of all n inducers is simultaneous). More
generally n > 1, where n is not necessarily an integer, represents
some degree of cooperativity between the binding of multiple
regulator molecules. More complicated functional forms than
the one from eq 8 have been derived for regulation mechanisms
involving multiple regulatory states and regulators, leading to a
generalizable framework.24

Once the response of a device has been characterized, it
becomes possible to compare alternative mechanisms by
comparing models of the expected steady-state transcriptional
activity in response to changes in the experimental conditions.
For this, a metric of the capacity of a model to describe the
observed experimental characterization data is required, which

Figure 2. Quantitative characterization of a 3OC6HSL receiver device. The 3OC6HSL receiver device (A) was constructed and characterized at
various concentrations of input signal. Growth rates remained unchanged across these conditions (B) and both the absolute (C) and relative (D)
characterization procedures captured the induction of the device. The ratiometric strategy significantly decreased the experimental variability, leading
to a more robust characterization (E). Note that the absolute measurements (C) were not adjusted for signal gain, since only the signal gain ratio
between the two channels was measured (see Methods).
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takes into account the model complexity. This helps to protect
against parameter overfitting, in which additional parameters
may spuriously model exogenous variations in the data arising
from experimental fluctuations, for example. For such
comparisons, a number of information criteria, including the
Akaike (AIC), Bayesian (BIC), and Deviance (DIC)
information criterion are computed automatically as part of
our Bayesian parameter inference procedure (see Methods).
We use these metrics to assess different mathematical models
describing the response of a device, which represent different
mechanistic hypotheses.
Implementation and Graphical Interface. To enable

both characterization and design within a common software
framework, we integrated our computational method as part of
the GEC environment,14 which provides simulation, visual-
ization, and analysis functionalities, as well as a convenient web
interface. The novel characterization module provides a
convenient interface for browsing the raw experimental data

(see Supplementary Figure S1 for a screen shot illustrating
this), as well as the computed growth, steady-state fluorescence,
and activity values for each signal. A choice of several classical
growth models22 and functional models (including Michaelis−
Menten, dimerization, and Hill) is available. This allows the
response of any measured signal (e.g., absolute or relative
activity, growth rate, carrying capacity, etc.) to experimental
conditions to be studied and alternative mechanistic hypotheses
describing the device behavior to be rigorously compared.

Receiver Characterization. We applied our computational
methodology to the characterization of a receiver device
(Figure 2), constructed using components from a bacterial
quorum sensing system.15,16 In this device, the input signal
3OC6HSL diffuses into the cell and forms a complex with the
receiver protein LuxR,17,18 which is expressed constitutively
from the low expression Pcat promoter. The choice of the Pcat
promoter was motivated by the negative effects on growth
observed when LuxR was driven by higher activity promoters.

Figure 3. Model selection and parametrization for the 3OC6HSL receiver device. A number of different models corresponding to alternative
mechanisms describing the 3OC6HSL receiver were compared, including dimerization (row 1), Michaelis−Menten (row 2), and Hill (row 3)
mechanisms without basal expression, as well as the same mechanisms but allowing for basal expression (rows 4−6, respectively). In all cases, the
GEC characterization method was used with the indicated functional relationships and the resulting model is shown (as visualized within GEC) in
column 1. For each model, the histograms relate the posterior distributions (obtained from 50,000 MCMC samples after an initial burn-in phase of
50,000 samples) for parameters K (second column), a (third column), b (fourth column), and n (fifth column). Note that parameters b and n have
constant values for some models where their posteriors are omitted. The information criteria indicating the capacity of these mechanisms to explain
the data are compared in the top right panel. The posterior parameter distributions associated with a given model often reveal important details
about the identifiability of model parameters, the suitability of parameter ranges, and whether the model is appropriate for the device being
characterized.
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Such effects were also apparent in our LuxR induction
experiments, where the receiver protein was produced from
an additional high-copy plasmid (see Figure 5B). The LuxR-
3OC6HSL complex subsequently binds to promoter Plux,
which recruits RNA polymerase,17,18 thus inducing the
expression of the reporter signal YFP. The reference signal
CFP is expressed from Ptet, which behaves as a constitutive
promoter due to the absence of the TetR repressor. We also
investigated the extent to which our characterization method is
independent of the reference promoter used, by replacing the
reference promoter Ptet with the promoter J23101.12,13

The behavior of the receiver device was characterized by
varying the concentrations of the 3OC6HSL signal between 0
and 1 mM. Models describing the growth of bacteria under the
different conditions were inferred using the Bayesian procedure
described above. The results indicated that an increase in the
level of induction did not significantly impact the growth rate
(for example, a growth rate μ = 0.0173 corresponds to a 40 min
doubling time) (Figure 2A). The activity of the device was
characterized by measuring the absolute YFP fluorescence
(Figure 2C), together with the ratio of YFP to CFP (Figure
2D). The coefficients of variation for both measurements were
compared (Figure 2E). Plots of individual experimental and
technical replicates are available in Supplementary Figure S3.
To determine the functional relationship between the device

activity and concentration of 3OC6HSL, we applied our
parameter inference procedure to model the relationship
between device activity and the concentration of 3OC6HSL.
[For this experiment, separate data sets (corresponding to

experimental replicates) were merged before performing
parameter inference. Thus, the various corrections (gain,
background, autofluorescence) are not performed individually
for each experiment, but as a whole this did not affect the
results significantly.] A common characterization strategy,
consistent with previous studies,13,19−21 involves fitting a Hill
equation to capture the functional response (eq 8), where [A]
denotes the concentration of the 3OC6HSL signal. We
compared models capturing dimerization (n = 2), Michaelis−
Menten (n = 1), and Hill mechanisms, both with (b > 0) and
without (b = 0) basal expression, as possible mechanisms
describing the receiver response.13,19,21 The dimerization model
corresponds to a mechanism where two copies of the LuxR-
3OC6HSL complex bind the Plux promoter cooperatively. In
contrast, the Michaelis−Menten model corresponds to the case
where either a single complex binds the promoter or there is no
cooperativity. Finally, the Hill model generalizes these
mechanisms by introducing a cooperativity parameter n and
is capable of capturing the functional response of more
complicated mechanisms through fractional values of n. To
correlate the studied models to the ratiometric measurements,
note that the parameters a and b should be interpreted as being
relative to the second channel and are thus quantified in relative
promoter units (RPUs). Additional information regarding the
derivation of these equations from more detailed chemical
reaction mechanisms is available in the Supporting Information.
We compared these different models by computing the
posteriors illustrating the captured parameter uncertainties, as
well as the information criteria metrics reflecting the capacity of

Figure 4. Robustness of the ratiometric characterization methodology. The initial characterization of the 3OC6HSL receiver (data set denoted by H
and shown in black) was compared against characterization experiments performed in a different laboratory facility (data set denoted by A and
shown in red) and with a different reference promoter J23101 (data set denoted by J23101 and shown in blue). The parameter values of the general
Hill function (eq 8) were obtained for each data set using GEC. The posterior distributions for each parameter obtained using our procedure are
available in Supplementary Figure S5, and the mean parameter values obtained for all three data sets are compared in panel D, where the error bars
correspond to 1 standard deviation from the mean. Note that the relative promoter units (RPU) differ for the characterizations performed using the
Ptet and J23101 reference promoters, where the RPUs for Ptet are slightly higher than for J23101. Previous experiments have characterized Ptet
gainst the J23101 reference as 1.05 ± 0.08,13 1.2 ± 0.1,12 and 1.29 ± 0.16 RPU.13
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the models to explain the data (Figure 3). Both the Hill and
Michaelis−Menten mechanisms were comparable in terms of
their capacity to explain the experimental data. However the
more general Hill mechanism was preferred, despite the
additional parameters. Including a nonzero basal expression
term further improved the quality of the models. In contrast,
the dimerization mechanisms (leading to a cooperative n = 2
term) provided a worse fit. While it is believed that LuxR-type
proteins form dimers in order to interact with DNA,16 the
dimerization mechanism we studied was characterized by the
cooperativity of monomer bindings. In contrast, the non-
cooperative binding captured within the Michaelis−Menten
and Hill models (when n < 1) was consistent with previous
experimental observations.18 Overall, the ratiometric character-
ization procedure resulted in decreased parameter uncertainty
as compared to using the absolute measurements (Supple-
mentary Figure S4).
Characterization Robustness. To investigate the robust-

ness of the ratiometric approach, we characterized the
3OC6HSL receiver device (Figure 2A) in two additional
settings. First, we characterized the device in two different

laboratory facilities equipped with an equivalent plate reader.
Second, we replaced the reference promoter Ptet with the
promoter J23101, which has previously been used as a
reference.12,13 The results are presented in Figure 4. Note
that the relative promoter units (RPU) differ between the Ptet
and J23101 reference promoters. In previous experiments, the
strength of the Ptet promoter (R0040) was characterized
against the J23101 reference as 1.05 ± 0.0813 and 1.2 ± 0.1
RPU12 using absolute measurements and as 1.29 ± 0.16 RPU
using ratiometric measurements.13 This suggests that the RPUs
for Ptet are slightly higher than for J23101. The response of the
device to 3OC6HSL was characterized as a general Hill model
using each experimental data set (Figure 4D). GEC model
visualizations and full parameter posteriors are shown in
Supplementary Figure S5. Parameters a and b are reported in
RPUs and differ for data sets using the promoter Ptet (A and
H) and the promoter J23101. The higher maximal activity a of
the receiver when characterized against J23101 is consistent
with the higher reference activity of the Ptet promoter.

Enhanced 3OC6HSL Sensitivity via Inducible Expres-
sion of LuxR. To study the effect of receiver concentration on

Figure 5. Enhanced 3OC6HSL sensitivity via inducible expression of LuxR. A modified 3OC6HSL receiver device (A) was constructed to allow the
induction of the LuxR receiver protein through the addition of arabinose. Note that details of the additional arabinose receiver component such as
the constitutively expressed AraC receiver protein are omitted from the illustration. The GEC characterization procedure was used to calculate the
mean ± standard deviation of the posterior distributions for (B) growth rate and (C) relative promoter activity. The device was characterized at 0, 1,
and 10 mM arabinose and at various concentrations of the 3OC6HSL signal. (D) Hill function characterization of relative promoter activity as a
function of 3OC6HSL. For each concentration of arabinose, separate Hill functions were inferred against the data in panel C, with the Hill function
parameters (K, a, b, n) as indicated (see Supplementary Figure S8 for full posterior distributions). (E) Hill function characterization of growth rate as
a function of 3OC6HSL. For each concentration of arabinose, separate Hill functions were inferred against the data in panel B, with the Hill function
parameters (K, a, b, n) as indicated (see Supplementary Figure S9 for full posterior distributions). In panels D and E, symbols and error bars
represent the mean ± standard deviation of the posterior distributions, inferred via Bayesian inference in GEC.
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device characterization, the LuxR receiver protein was ex-
pressed from the inducible Pbad promoter on a separate, high-
copy plasmid (Figure 5A), in addition to the original Pcat
construct. Thus, the concentration of LuxR in the system was
regulated through the addition of arabinose. We characterized
this device at different concentrations of 3OC6HSL (ranging
from 0 to 1 mM) and at three different concentrations of
arabinose (0, 1, and 10 mM) to obtain relative measurements
(Figure 5C). The absolute measurements obtained for the
LuxR induction experiments are available in Supplementary
Figure S6. Details regarding the individual technical and
experimental replicates are available in Supplementary Figure
S7. As expected, changing the concentration of the receiver
protein affected the sensitivity K of the device (Figure 5D),
which changed by over 2 orders of magnitude (K = 2127 ± 566
nM with 0 mM arabinose and K = 12.5 ± 3.0 with 10 mM
arabinose. The full posteriors and GEC model visualizations of
the receiver response are available in Supplementary Figure S8.
The results also indicated that the growth rates of bacteria
carrying this device were significantly affected by induction with
3OC6HSL and, furthermore, that this effect became more
pronounced upon induction with arabinose (Figure 5B).
Assuming that the growth effects are related to the activity of
the device, we used a Hill model to capture the response of
growth to the changing experimental conditions and obtained
parameters for this model (Figure 5E, Supplementary Figure
S9). These results indicate that growth rates are decreased
upon induction with 3OC6HSL (parameter b is greater than a
in Figure 5E) and that growth rate begins to decrease at lower
3OC6HSL concentrations when more LuxR is present.
Specifically, parameter K was greater for 10 mM arabinose
than for 0 and 1 mM (Figure 5E).
In this paper we presented a computational method for the

characterization of genetic devices, with the goal of enabling
automated and robust characterization procedures. Our method
was based on the use of a ratiometric experimental protocol13

requiring the simultaneous measurement of at least two
fluorescence signals, which is within the capabilities of standard
laboratory equipment. Although the approach requires two
distinct fluorescence reporters, this does not increase the
experimental burden dramatically from single reporter
methods, while enabling significantly increased accuracy of
characterization. The experimental cost can be further reduced
by constructing reusable characterization templates, which
contain most required components with the exception of the
device to be characterized.
This work provides a step toward the design and

construction of reliable biological devices from characterized
components. However, the application of this approach to
systems of increased complexity is required to better under-
stand component modularity. In particular, the appropriate
definition of a module will need to be rigorously determined,
such that the characterized properties of a device are preserved
in different contexts. Here we assume that the devices being
characterized are engineered for modularity through one of
several approaches developed previously in the field.7,8

Moreover, our method is general in the sense that it can be
used to characterize devices at different levels of abstraction,
depending on the assumptions of modularity being made.
Our method was implemented within the GEC environment,

allowing the automated processing of experimental data and the
parametrization of models for subsequent computational
studies. The GEC implementation also improved the

accessibility of the characterization method by facilitating
both modeling and visualization. While a number of settings
were exposed to enable interactive experimentation and tuning
of the computational procedure, its automatic application is
also possible using the default settings. For typical character-
ization experiments of individual devices, our framework
supports rapid data processing and model fitting. For example,
the computation times for the characterization of the receiver
device were under 1 min. While currently all computation steps
are performed sequentially (Figure 1), the computation for
each replicate is easily parallelizable, since the same data
processing steps are applied to each of the different
experimental conditions. The computation of a device
response, however, depends on the prior characterization of
all experimental conditions and must therefore be done as a
subsequent step.
By inferring a number of key parameters describing the

growth of cells in various experimental conditions, we were able
to gain additional insights about the effect of a synthetic device
on its host. For example, we were able to quantify how a
synthetic 3OC6HSL receiver device affects the growth rate of
its host, for different values of input signal. Enabling these
experiments motivated our use of the more restrictive
functional growth models22 rather than alternative interpolation
techniques such as polynomial or spline interpolation, which
have been used previously.10 The inferred growth parameters
also allowed us to automate the selection of the subset of
experimental data pertaining to exponential cell growth for
subsequent characterization. Measuring parts and devices
during exponential growth is consistent with previous
approaches,12,13 but the characterization of components in
other settings, such as during stationary phase, is also desirable.
While previous approaches13 were unable to estimate the
steady-state and reference activities under these conditions, our
direct steady-state ratio computation strategy is independent of
the growth data. For such experiments, the behavior of the
reference promoter across different growth phases is critical.
For instance, characterization of a device in stationary phase
will require a reference promoter that is not silenced during this
phase.
Our method relied on Bayesian parameter inference to

quantify the response of a device to external perturbations. We
illustrated this functionality by modeling the response of the
receiver to various concentrations of its input signal. The model
selection capabilities of our characterization method allowed us
to explore a variety of models describing this response. These
models corresponded to different mechanistic hypotheses
about the behavior of the device but differed in their capacity
to explain the observed experimental data. This allowed us to
compare several possible mechanisms. We envision that such
rigorous comparisons will provide a valuable tool for exploring
possible biological mechanisms, provided that robust measure-
ment protocols leading to the collection of precise experimental
data are available. The posterior distributions often reveal
important information about the characterization experiment.
For example, inappropriately selected parameter ranges result
in truncated distributions with a sharp cutoff at the limiting
value. Furthermore, the identifiability of parameters given the
available data can be assessed from these distributions, which
might prompt additional experiments. Finally, the uncertainty
of individual parameters helps gauge the overall capacity of the
model to explain the experimental data. Computing and
representing this uncertainty is a major advantage of the
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Bayesian parameter inference procedure over alternative
strategies that produce singleton estimates (e.g., mean
parameter values) or highly simplified approximations (e.g.,
mean parameter values with error).
To minimize variability due to experimental conditions and

instrumentation, we based our method on a ratiometric
characterization protocol.13 For the characterization of the
receiver device, both the absolute (Figure 2C) and relative
(Figure 2D) measurements were capable of capturing the
induction of the device activity, as a function of the input signal
concentration. The ratiometric method significantly reduced
the variability in experimental measurements, as indicated by
the coefficient of variation (Figure 2E). The more precise
characterization also reduced the uncertainty in the model
parameters describing the response of the device to changing
input signal concentrations (Supplementary Figure S4). This
allowed different models, corresponding to alternative mech-
anistic hypotheses for the device response, to be compared
more accurately (Figure 3). Out of the set of mechanisms that
was investigated, the general Hill equation was best at
describing the experimental data, despite involving more
parameters, as indicated by the computed information criteria
(top right panel of Figure 3). The noncooperative binding (n ≤
1) observed in Figure 3 was consistent with previously
described experimental results18 where a Hill coefficient of n
= 0.9 was identified. The slight preference for the more-general
Hill mechanism (with n < 1), as compared to the simplified
Michaelis−Menten mechanism (n = 1), indicated a possibility
that the true mechanism governing the behavior of this receiver
involves additional interactions.
The ratiometric procedure also reduced variability when

characterizing a device in different experimental settings. In our
experiments, the characterization of the 3OC6HSL receiver was
consistent when performed in a different laboratory setting
(Figure 4), which was not surprising given the similarity of
experimental protocols and laboratory instrumentation used.
Even so, some differences (e.g., in the measured growth rates,
Figure 4A) illustrated the variability in experimental measure-
ment that can occur. The receiver characterization was also
consistent when two different promoters, Ptet and J23101, were
used as references (Figure 4). The ability to compare
characterization experiments performed against different
references is beneficial for certain situations, such as when
the reference promoter is affected by the chemical inducer used
to study the device response. Even so, comparing ratiometric
measurements collected against different references is not
always straightforward. While we were able to consistently
characterize the receiver device against both the Ptet and
J23101 reference promoters, the results were not comparable
when a CI repressible promoter was used as a reference, due to
interferences that are currently being investigated. Note that
the reported RPU units between the relative measurements in
Figure 4C were not directly comparable, as they represented
the relative strength of the receiver against different reference
promoters. To compare these units directly, a precise
characterization of the relative strength between the two
reference promoters is required. In previous experiments the
strength of the Ptet promoter (R0040) was characterized
against the J23101 reference as 1.05 ± 0.08 RPU13 and 1.2 ±
0.1 RPU12 using absolute measurements and as 1.29 ± 0.16
RPU using ratiometric measurements.13 This is consistent with
our results when parameters a and b (Figure 4D) identified for
the J23101 construct are rescaled to convert the units from

J23101 to Ptet RPU. In spite of the agreement, this indicates
the challenges in characterizing parts and devices across
different standards, where small errors in the estimation of
the relative standard strengths accumulate.
Our computational method also enabled us to study the

effects of environmental changes on cell growth. We observed
that the growth rates of bacteria carrying the modified
3OC6HSL receiver (Figure 5A) were significantly affected by
induction with 3OC6HSL (Figure 5B), as compared to the
original device (Figure 2A) where growth rates remained
unchanged (Figure 2B). The decrease in growth was possibly a
result of the higher availability of the LuxR receiver protein,
leading to higher activity of the device from Figure 5A (e.g.,
comparing parameters a in Figure 4D and Figure 5D). The
decrease became more pronounced upon induction with
arabinose (Figure 5B). These effects were also captured in
the models of the growth rate response to changes in arabinose
and 3OC6HSL (Figure 5E). Changing the concentration of the
receiver protein LuxR also affected the sensitivity of the device
(Figure 5C), which is consistent with previously described
mechanisms of the 3OC6HSL, LuxR and Plux promoter
binding.25 The change in the device sensitivity was also
observed in the identified response models (parameter K in
Figure 5D), where the high sensitivity for the LuxR induction at
10 mM Ara resulted in the increased uncertainty in the inferred
parameter n, since only a single data point was available at low
3OC6HSL induction for this experiment.
Although previous work has pursued the characterization of

parts,12 here we focus on the characterization of devices as
simple reusable components in order to avoid context-specific
sequence effects. However, modularity is not always guaranteed
even at this level of abstraction.
Our approach focused on characterizing the steady-state

activity of devices from population (plate reader) measure-
ments, since such experimental protocols are often more
accessible and scale more readily. In addition, the ratiometric
protocol13 could offer significant advantages for single-cell (e.g.,
flow cytometry) measurements. Extending our computational
procedures for such measurements is a promising direction for
future work. Notably, when devices with more complex
dynamic behavior such as bistability are characterized, the
heterogeneity in a population could hinder the use of
population averaged signals for characterization. Similarly,
while the steady-state behavior of a device provides an accurate
description for some systems, the transient dynamic behavior is
crucial for the correct functionality of others and must also be
studied.
By providing sophisticated data processing and computa-

tional modeling capabilities within an interactive software tool,
our approach will help to streamline the characterization of
devices. Currently, the method is most useful for automating
the computational aspects of characterization experiments,
while also providing a rigorous treatment of model uncertainty
and facilitating interactive exploration of model hypotheses. In
future, the method will be more closely integrated with the
biological design process, for example, to allow the automated
characterization of biological devices within a centralized
database whenever new experimental data is uploaded. This,
in turn, will enable the accurate simulation and analysis of
systems composed of characterized components, prior to their
physical construction. Additional future extensions to the
computational method and its implementation involve the
ability to seamlessly handle multiple characterization data sets,
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tracking several input and output signals, and allowing
improved customization of growth and response models, in
addition to adapting the approach to a range of organisms. We
envision that further development of the approach will enable
the establishment of new standards for robust characterization
within the broader scientific community.

■ METHODS
Plasmids. Plasmids (listed in Supplementary Table S3)

were constructed using Gibson assembly.2 Ratiometric
reporters were constructed by modifying J69594:pSB3K3CY13

as described in tab:Plasmids. All constructs initiated translation
at ribosome binding site (RBS) B0034 from the Registry of
Standard Biological Parts (Registry) and terminated tran-
scription with terminator B0010 (Registry).
Plate Fluorometer Assays. Plasmids described were used

to transform E. coli strain DH10B (Ecloni 10G, Lucigen).
Single colonies were used to inoculate cultures in M9 medium
supplemented with 0.2% casamino acids, 0.4% glucose, and 1
mM thiamine with appropriate selective antibiotics (50 μg/mL
kanamycin, 50 μg/mL carbenicillin). After overnight growth at
37 °C, these cultures were diluted 1:1000 in the same medium
and transferred to 96-well clear-bottom plates (Greiner). 3-
Oxohexanoyl-homoserine lactone (Sigma) was dissolved in
DMSO to a concentration of 200 mM and then diluted in
growth medium to the appropriate concentrations such that 5
μL of solution added to 195 μL of cell suspension resulted in
the final induction concentrations described. Plates were placed
in a BMG Fluostar Omega platereader set to 37 °C with
shaking at 200 rpm. Optical density (600 nm) and fluorescence
(eCFP: 430 nm excitation, 480 nm emission; eYFP: 500 nm
excitation, 530 nm emission) readings were taken approx-
imately every 10 min for 17 h.
Controls. Several controls were measured in order to

calibrate the characterization data. Measurements of blank
media was performed to calculate the median background
absorbance and fluorescence of all channels, and these values
were subtracted from all characterization measurements. The
fluorescence of nonfluorescent cells was also measured to
correct the effects of autofluorescence where linear regression
was used to establish a relationship between absorbance and
autofluorescence during the exponential growth phase of
bacteria. Direct measurements of devices where the same
promoter is driving the expression of both the eYFP and eCFP
reporters were used to measure the signal gain ratios between
the two channels. To obtain more accurate estimates, the
J23101 promoter and the PLas promoter induced by low (0
μM) and high (25 μM) concentrations of the 3OC12HSL
input signal were measured and averaged. Note that these
measurements captured only the gain ratio between the eYFP
and eCFP channels rather than the gains of each channel
individually. All controls were measured separately for the two
experimental setups used in this study.
Computation. All data processing, parameter inference, and

characterization were performed using an implementation of
the computational method described in this paper as an
extension to the GEC tool.14 Matlab was used to combine
separate results and produce figures, but all computational
components required for characterization experiments are
contained within the GEC extension. For the Bayesian
parameter inference used within the characterization method,
Markov Chain Monte Carlo (MCMC) techniques imple-
mented within the Filzbach tool (http://research.microsoft.

com/filzbach) are employed, which also computes the
information criteria used for model comparison. For the
inference of growth parameters, a linear noise model was used
with 2,000 burn-in and sampling steps. For the response
models, a square-root noise model was used with 50,000 burn-
in and sampling steps. Literature values describing the
translation, degradation, and maturation rates of reporter
proteins were used for the computation of device activity and
are available in the Supporting Information.
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